Antifungal Effect of Metabolites from a New Strain Lactiplantibacillus Plantarum LPP703 Isolated from Naturally Fermented Yak Yogurt

从天然发酵牦牛酸奶中分离的新菌株植物乳杆菌LPP703代谢物的抑菌作用

阅读:5
作者:Qian Peng, Jing Yang, Qiang Wang, Huayi Suo, Ahmed Mahmoud Hamdy, Jiajia Song

Abstract

The antifungal effect of metabolites produced by a new strain of Lactiplantibacillus (Lpb.) plantarum LPP703, isolated from naturally fermented yak yogurt, was investigated. The results showed that Lpb. plantarum LPP703 significantly inhibited four fungal species, including Penicillium sp., Rhizopus delemar, Aspergillus flavus, and Aspergillus niger. The metabolites produced after 20 h of Lpb. plantarum LPP703 fermentation showed the highest antifungal activity against Penicillium sp. Compared with the control group, the Lpb. plantarum LPP703 metabolites-treated Penicillium sp. spores were stained red by propidium iodide, indicating that the cell membrane of the fungal spores was damaged. Moreover, the antifungal effect of the Lpb. plantarum LPP703 metabolites on Penicillium sp. was not changed after heating or treatment with various proteases, but showed a sharp decrease when the pH value was regulated to 5.0 or above. The oleamide, trans-cinnamic acid, and citric acid were the three most abundant in the Lpb. plantarum LPP703 metabolites. Molecular docking predicated that the oleamide interacted with the active site of lanosterol 14-alpha-demethylase (CYP51, a crucial enzyme for fungal membrane integrity) through hydrogen bonds and had the lowest docking score, representing the strongest binding affinity to CYP51. Taken together, the metabolites from a new strain of Lpb. plantarum, LPP703, had potent antifungal activity against Penicillium sp., which might be associated with the damage of the active ingredient to fungal membrane integrity. This study indicated that Lpb. plantarum LPP703 and its metabolites might act as biological control agents to prevent fungal growth in the food industry.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。