Enhancing Photoluminescence and Mobilities in WS2 Monolayers with Oleic Acid Ligands

利用油酸配体增强 WS2 单层中的光致发光和迁移率

阅读:15
作者:Arelo O A Tanoh, Jack Alexander-Webber, James Xiao, Géraud Delport, Cyan A Williams, Hope Bretscher, Nicolas Gauriot, Jesse Allardice, Raj Pandya, Ye Fan, Zhaojun Li, Silvia Vignolini, Samuel D Stranks, Stephan Hofmann, Akshay Rao

Abstract

Many potential applications of monolayer transition metal dichalcogenides (TMDs) require both high photoluminescence (PL) yield and high electrical mobilities. However, the PL yield of as prepared TMD monolayers is low and believed to be limited by defect sites and uncontrolled doping. This has led to a large effort to develop chemical passivation methods to improve PL and mobilities. The most successful of these treatments is based on the nonoxidizing organic "superacid" bis(trifluoromethane)sulfonimide (TFSI) which has been shown to yield bright monolayers of molybdenum disulfide (MoS2) and tungsten disulfide (WS2) but with trap-limited PL dynamics and no significant improvements in field effect mobilities. Here, using steady-state and time-resolved PL microscopy we demonstrate that treatment of WS2 monolayers with oleic acid (OA) can greatly enhance the PL yield, resulting in bright neutral exciton emission comparable to TFSI treated monolayers. At high excitation densities, the OA treatment allows for bright trion emission, which has not been demonstrated with previous chemical treatments. We show that unlike the TFSI treatment, the OA yields PL dynamics that are largely trap free. In addition, field effect transistors show an increase in mobilities with the OA treatment. These results suggest that OA serves to passivate defect sites in the WS2 monolayers in a manner akin to the passivation of colloidal quantum dots with OA ligands. Our results open up a new pathway to passivate and tune defects in monolayer TMDs using simple "wet" chemistry techniques, allowing for trap-free electronic properties and bright neutral exciton and trion emission.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。