Corticosterone and testosterone treatment influence expression of gene pathways linked to meiotic segregation in preovulatory follicles of the domestic hen

皮质酮和睾酮治疗影响与家母鸡排卵前卵泡减数分裂分离相关的基因通路的表达

阅读:6
作者:Elizabeth R Wrobel, Alexandra B Bentz, W Walter Lorenz, Stephen T Gardner, Mary T Mendonça, Kristen J Navara

Abstract

Decades of work indicate that female birds can control their offspring sex ratios in response to environmental and social cues. In laying hens, hormones administered immediately prior to sex chromosome segregation can exert sex ratio skews, indicating that these hormones may act directly on the germinal disc to influence which sex chromosome is retained in the oocyte and which is discarded into an unfertilizable polar body. We aimed to uncover the gene pathways involved in this process by testing whether treatments with testosterone or corticosterone that were previously shown to influence sex ratios elicit changes in the expression of genes and/or gene pathways involved in the process of meiotic segregation. We injected laying hens with testosterone, corticosterone, or control oil 5h prior to ovulation and collected germinal discs from the F1 preovulatory follicle in each hen 1.5h after injection. We used RNA-sequencing (RNA-seq) followed by DESeq2 and gene set enrichment analyses to identify genes and gene pathways that were differentially expressed between germinal discs of control and hormone-treated hens. Corticosterone treatment triggered downregulation of 13 individual genes, as well as enrichment of gene sets related to meiotic spindle organization and chromosome segregation, and additional gene sets that function in ion transport. Testosterone treatment triggered upregulation of one gene, and enrichment of one gene set that functions in nuclear chromosome segregation. This work indicates that corticosterone can be a potent regulator of meiotic processes and provides potential gene targets on which corticosterone and/or testosterone may act to influence offspring sex ratios in birds.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。