Molecular Recognition in Confined Space Elucidated with DNA Nanopores and Single-Molecule Force Microscopy

利用 DNA 纳米孔和单分子力显微镜阐明密闭空间内的分子识别

阅读:6
作者:Saanfor Hubert Suh, Yongzheng Xing, Alexia Rottensteiner, Rong Zhu, Yoo Jin Oh, Stefan Howorka, Peter Hinterdorfer

Abstract

The binding of ligands to receptors within a nanoscale small space is relevant in biology, biosensing, and affinity filtration. Binding in confinement can be studied with biological systems but under the limitation that essential parameters cannot be easily controlled including receptor type and position within the confinement and its dimensions. Here we study molecular recognition with a synthetic confined nanopore with controllable pore dimension and molecular DNA receptors at different depth positions within the channel. Binding of a complementary DNA strand is studied at the single-molecule level with atomic force microscopy. Following the analysis, kinetic association rates are lower for receptors positioned deeper inside the pore lumen while dissociation is faster and requires less force. The phenomena are explained by the steric constraints on molecular interactions in confinement. Our study is the first to explore recognition in DNA nanostructures with atomic force microscopy and lays out new tools to further quantify the effect of nanoconfinement on molecular interactions.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。