Food Protein Sterylation: Chemical Reactions between Reactive Amino Acids and Sterol Oxidation Products under Food Processing Conditions

食品蛋白质脱脂:食品加工条件下活性氨基酸与甾醇氧化产物之间的化学反应

阅读:9
作者:Franks Kamgang Nzekoue, Thomas Henle, Giovanni Caprioli, Gianni Sagratini, Michael Hellwig

Abstract

Sterols, especially cholesterol and phytosterols, are important components of food lipids. During food processing, such as heating, sterols, like unsaturated fatty acids, can be oxidized. Protein modification by secondary products of lipid peroxidation has recently been demonstrated in food through a process called lipation. Similarly, this study was performed to assess, for the first time, the possibility of reactions between food proteins and sterol oxidation products in conditions relevant for food processing. Therefore, reaction models consisting of oxysterol (cholesterol 5α,6α-epoxide) and reactive amino acids (arginine, lysine, and methionine) were incubated in various conditions of concentration (0-8 mM), time (0-120 min), and temperature (30-180 °C). The identification of lysine adducts through thin-layer chromatography (TLC), high-performance liquid chromatography (HPLC) with a diode array detector (DAD), and electrospray ionization (ESI) mass spectrometry (MS) evidenced a reaction with lysine. Moreover, the HPLC-ESI with tandem mass spectrometry (MS/MS) analyses allowed observation of the compound, whose mass to charge ratio m/z 710.5 and fragmentation patterns corresponded to the reaction product [M + H]+ between cholesterol-5α,6α-epoxide and the ε-amino-group of Nα-benzoylglycyl-l-lysine. Moreover, kinetic studies between Nα-benzoylglycyl-l-lysine as a model for protein-bound lysine and cholesterol 5α,6α-epoxide were performed, showing that the formation of lysine adducts strongly increases with time, temperature, and oxysterol level. This preliminary study suggests that in conditions commonly reached during food processing, sterol oxidation products could react covalently with protein-bound lysine, causing protein modifications.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。