Human cerebrospinal fluid fatty acid levels differ between supernatant fluid and brain-derived nanoparticle fractions, and are altered in Alzheimer's disease

人类脑脊液中脂肪酸的水平在上清液和脑源性纳米颗粒部分之间存在差异,并且在阿尔茨海默病中会发生改变

阅读:5
作者:Alfred N Fonteh, Matthew Cipolla, Jiarong Chiang, Xianghong Arakaki, Michael G Harrington

Background

Although saturated (SAFA), monounsaturated (MUFA), and polyunsaturated (PUFA) fatty acids are important structural components of neuronal membranes and precursors of signaling molecules, knowledge of their metabolism in Alzheimer's disease (AD) is limited. Based on recent discovery that lipids in cerebrospinal fluid (CSF) are distributed in both brain-derived nanoparticles (NP) and supernatant fluid (SF), we hypothesized that fatty acid (FA) abundance and distribution into these compartments is altered in early AD pathology. Methodology and findings: We assayed the FA composition and abundance in CSF fractions from cognitively healthy (CH), mild cognitive impairment (MCI), and AD study participants using gas chromatography-mass spectrometry. In the SF fraction, concentration of docosahexaenoic acid [DHA, (C22:6n-3)] was less in AD compared with CH, while alpha linolenic acid [α-LNA, (C18:3n-3)] was lower in MCI compared with CH. In the NP fraction, levels of SAFAs (C15:0, C16:0) and a MUFA (C15:1) differentiated CH from MCI, while two MUFAs (C15:1, C19:1) and four PUFAs (C20:2n-6, C20:3n-3, C22:4n-6, C22:5n-3) were higher in AD compared with CH. Levels of even-chain free SAFA and total free FA levels were higher in AD, levels of odd-chain free SAFAs, MUFAs, n-3 PUFAs, and total PUFA, were lower in AD compared with CH. Free n-6 PUFA levels were similar in all three groups. Conclusions and significance: FA metabolism is compartmentalized differently in NP versus SF fractions of CSF, and altered FA levels reflect the importance of abnormal metabolism and oxidative pathways in AD. Depleted DHA in CSF fractions in AD is consistent with the importance of n-3 PUFAs in cognitive function, and suggests that disturbed PUFA metabolism contributes to AD pathology. This study of FA levels in CSF fractions from different cognitive stages shows potential AD biomarkers, and provides further insight into cell membrane dysfunctions, including mechanisms leading to amyloid production.

Significance

FA metabolism is compartmentalized differently in NP versus SF fractions of CSF, and altered FA levels reflect the importance of abnormal metabolism and oxidative pathways in AD. Depleted DHA in CSF fractions in AD is consistent with the importance of n-3 PUFAs in cognitive function, and suggests that disturbed PUFA metabolism contributes to AD pathology. This study of FA levels in CSF fractions from different cognitive stages shows potential AD biomarkers, and provides further insight into cell membrane dysfunctions, including mechanisms leading to amyloid production.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。