Sarkosyl-Induced Helical Structure of an Antimicrobial Peptide GW-Q6 Plays an Essential Role in the Binding of Surface Receptor OprI in Pseudomonas aeruginosa

肌氨酸钠诱导的抗菌肽 GW-Q6 的螺旋结构在铜绿假单胞菌表面受体 OprI 的结合中起着至关重要的作用

阅读:5
作者:Tien-Sheng Tseng, Shih-Han Wang, Ting-Wei Chang, Hung-Mu Wei, Yu-June Wang, Keng-Chang Tsai, You-Di Liao, Chinpan Chen

Abstract

The emergence of antibiotic-resistant microbial strains has become a public health issue and there is an urgent need to develop new anti-infective molecules. Although natural antimicrobial peptides (AMPs) can exert bactericidal activities, they have not shown clinical efficacy. The limitations of native peptides may be overcome with rational design and synthesis. Here, we provide evidence that the bactericidal activity of a synthetic peptide, GW-Q6, against Pseudomonas aeruginosa is mediated through outer membrane protein OprI. Hyperpolarization/depolarization of membrane potential and increase of membrane permeability were observed after GW-Q6 treatment. Helical structure as well as hydrophobicity was induced by an amphipathic surfactant, sarkosyl, for binding to OprI and possible to membrane. NMR studies demonstrated GW-Q6 is an amphipathic α-helical structure in DPC micelles. The paramagnetic relaxation enhancement (PRE) approach revealed that GW-Q6 orients its α-helix segment (K7-K17) into DPC micelles. Additionally, this α-helix segment is critical for membrane permeabilization and antimicrobial activity. Moreover, residues K3, K7, and K14 could be critical for helical formation and membrane binding while residues Y19 and W20 for directing the C-terminus of the peptide to the surface of micelle. Taken together, our study provides mechanistic insights into the mode of action of the GW-Q6 peptide and suggests its applicability in modifying and developing potent AMPs as therapeutic agents.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。