Hovenia dulcis Fruit Peduncle Polysaccharides Reduce Intestinal Dysbiosis and Hepatic Fatty Acid Metabolism Disorders in Alcohol-Exposed Mice

枳实果梗多糖可减轻酒精暴露小鼠的肠道菌群失调和肝脏脂肪酸代谢紊乱

阅读:7
作者:Liangyu Liu, Sijie Zhu, Yuchao Zhang, Zhenyuan Zhu, Yong Xue, Xudong Liu

Abstract

Alcohol abuse can lead to alcoholic liver disease, becoming a major global burden. Hovenia dulcis fruit peduncle polysaccharides (HDPs) have the potential to alleviate alcoholic liver injury and play essential roles in treating alcohol-exposed liver disease; however, the hepatoprotective effects and mechanisms remain elusive. In this study, we investigated the hepatoprotective effects of HDPs and their potential mechanisms in alcohol-exposed mice through liver metabolomics and gut microbiome. The results found that HDPs reduced medium-dose alcohol-caused dyslipidemia (significantly elevated T-CHO, TG, LDL-C), elevated liver glycogen levels, and inhibited intestinal-hepatic inflammation (significantly decreased IL-4, IFN-γ and TNF-α), consequently reversing hepatic pathological changes. When applying gut microbiome analysis, HDPs showed significant decreases in Proteobacteria, significant increases in Firmicutes at the phylum level, increased Lactobacillus abundance, and decreased Enterobacteria abundance, maintaining the composition of gut microbiota. Further hepatic metabolomics analysis revealed that HDPs had a regulatory effect on hepatic fatty acid metabolism, by increasing the major metabolic pathways including arachidonic acid and glycerophospholipid metabolism, and identified two important metabolites-C00157 (phosphatidylcholine, a glycerophospholipid plays a central role in energy production) and C04230 (1-Acyl-sn-glycero-3-phosphocholine, a lysophospholipid involved in the breakdown of phospholipids)-involved in the above metabolism. Overall, HDPs reduced intestinal dysbiosis and hepatic fatty acid metabolism disorders in alcohol-exposed mice, suggesting that HDPs have a beneficial effect on alleviating alcohol-induced hepatic metabolic disorders.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。