Pain Relief with Wet Cupping Therapy in Rats is Mediated by Heat Shock Protein 70 and ß-Endorphin

热休克蛋白 70 和 β-内啡肽介导大鼠湿拔罐疗法缓解疼痛

阅读:3
作者:Imam Subadi, Boya Nugraha, Hening Laswati, Harjanto Josomuljono

Background

Wet cupping therapy is a complementary therapy in pain management. The mechanism of this therapy, however, needs further elucidation. Cells injured by wet cupping therapy seem to stimulate the expression of heat shock protein 70 (HSP70). Its benefit in pain reduction could be mediated by the expression of ß-endorphin. This study aimed at determining the correlation between HSP70 and ß-endorphin after wet cupping therapy.

Conclusions

The benefit of wet cupping therapy in terms of pain reduction in rats could be mediated by the expression of HSP70 and ß-endorphin.

Methods

Sixteen male Wistar rats were divided into control (CG; n=8) and treatment (TG; n=8) groups. The rats in both groups were injected with complete Freund's adjuvant (CFA) at the footpad. In the TG, wet cupping therapy was done at the left and right paralumbar regions 48 hours after the CFA injection. Twenty-four hours after therapy, the hot plate test was done to assess pain threshold. Thereafter, immunohistochemistry from the skin subjected to wet cupping therapy was conducted for HSP70 and ß-endorphin.

Results

The expression of HSP70 was significantly higher in the keratinocytes of the TG (20.25±3.53; P<0.001) than in the keratinocytes of the CG (10.50±2.44; P<0.001). The expression of ß-endorphin was significantly higher in the keratinocytes of the TG (22.37±3.52; P<0.001) than in the keratinocytes of the CG (5.12±1.72; P<0.001). The results also revealed a high correlation between HSP70 and ß-endorphin (β=0.864; P<0.001). Pain threshold after wet cupping therapy was significantly higher in the TG (22.81±6.34 s; P=0.003) than in the CG (11.78±3.56 s). Conclusions: The benefit of wet cupping therapy in terms of pain reduction in rats could be mediated by the expression of HSP70 and ß-endorphin.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。