Inhibitory Effect of DNase-Chitosan-Nisin Nanoparticles on Cell Viability, Motility, and Spatial Structures of Listeria monocytogenes Biofilms

DNase-壳聚糖-乳酸链球菌素纳米粒子对单核细胞增生李斯特菌生物膜细胞活力、运动能力及空间结构的抑制作用

阅读:4
作者:Xinyi Pang, Xueying Du, Xin Hu, Zeyin Feng, Jing Sun, Xiangfei Li, Yingjian Lu

Abstract

Listeria monocytogenes biofilm contamination on food contact surfaces is a major concern for the food industry. Nanoparticle encapsulation appears as a novel strategy for food surface disinfection to prevent biofilm formation. Chitosan nanoparticles loaded with nisin and DNase I (DNase-CS-N) have been constructed to exhibit antimicrobial activity against L. monocytogenes. This study aimed to investigate their ability to inhibit L. monocytogenes biofilm formation and eliminate preformed biofilms on food contact surfaces (polystyrene, polyurethane, and stainless steel). DNase-CS-N could decrease 99% and 99.5% biofilm cell numbers at 1/2 MIC and MIC, respectively. At sub-MICs, DNase-CS-N could reduce cell motility (swimming and swarming) and slime production of L. monocytogenes. In terms of effect on biofilm elimination, DNase-CS-N at the concentration of 4 MIC led to 3-4 log reduction in biofilm cells in preformed biofilms, performing higher efficiency compared with other treatments (CSNPs, CS-N). Furthermore, the three-dimensional structure of L. monocytogenes biofilms was severely disrupted after DNase-CS-N treatment, with bacterial cells scattered on the surface. The morphology of biofilm cells was also greatly damaged with wrinkled surfaces, disrupted cell membranes, and leakage of intracellular nucleic acids and proteins. These results indicate the potential applicability of DNase-CS-N for inhibiting and eliminating L. monocytogenes biofilms on food contact surfaces.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。