Exploration of the carmaphycins as payloads in antibody drug conjugate anticancer agents

卡马霉素作为抗体药物偶联抗癌剂有效载荷的探索

阅读:5
作者:Jehad Almaliti, Bailey Miller, Halina Pietraszkiewicz, Evgenia Glukhov, C Benjamin Naman, Toni Kline, Jeffrey Hanson, Xiaofan Li, Sihong Zhou, Frederick A Valeriote, William H Gerwick

Abstract

Antibody-drug conjugates (ADCs) represent a new dimension of anticancer chemotherapeutics, with warheads to date generally involving either antitubulin or DNA-directed agents to achieve low-to sub-nanomolar potency. However, other potent cytotoxins working by different pharmacological mechanisms are under investigation, such as α,β-epoxyketone based proteasome inhibitors. These proteasome active agents are an emerging class of anticancer drug that possesses ultra-potent cytotoxicity to some cancer cell lines. The carmaphycins are representatives of this latter class that we isolated and characterized from a marine cyanobacterium, and these as well as several synthetic analogues exhibit this level of potency. In the current work, we investigated the use of these highly potent cytotoxic compounds as warheads in the design of novel ADCs. We designed and synthesized a library of carmaphycin B analogues that contain amine handles, enabling their attachment to an antibody linker. The basicity of these incorporated amine handles was shown to strongly affect their cytotoxic properties. Linear amines resulted in the greatest reduction in cytotoxicity whereas less basic aromatic amines retained potent activity as demonstrated by a 4-sulfonylaniline derivative. These investigations resulted in identifying the P2 residue in the carmaphycins as the most suitable site for linker attachment point, and hence, we synthesized a highly potent analogue of carmaphycin B that contained a 4-sulfonylaniline handle as an attachment point for the linker antibody.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。