Optimization of 3-(phenylthio)quinolinium compounds against opportunistic fungal pathogens

3-(苯硫基)喹啉化合物对抗机会性真菌病原体的优化

阅读:4
作者:Comfort A Boateng, Xue Y Zhu, Melissa R Jacob, Shabana I Khan, Larry A Walker, Seth Y Ablordeppey

Abstract

Ring-opened benzothieno[3,2-b]quinolinium salts (3) were designed and synthesized with substitution on the thiophene moiety. In vitro screenings were carried out against fungal pathogens including Cryptococcus neoformans, Candida albicans, Candida glabrata, Candida krusei and Aspergillus fumigatus. In all, by replacing the N-methyl group (2) with N-ω-phenylpentyl or ω-cyclohexylpentyl group to form substituted 3-(phenylthio)quinolinium compounds produced remarkable potencies, as high as 300-fold (cf, cryptolepine (1)=250 μg/mL vs 11p=0.8 μg/mL for C. albicans) over the starting tetracyclic parent. In addition, all the N-ω-cyclohexylpentyl analogs produced superior activity against all the microorganisms tested than the N-ω-phenylpentyl substituted compounds. The potential of these compounds to induce toxicity in Vero cells was also investigated and the majority of them showed lower or no cytotoxicity at 10 μg/mL than amphotericin B, the gold standard in antifungal drug development. For instance, the trifluoromethyl substituted analogs (11n-p) have selectivity indices over 2-fold better than those of amphotericin B in C. neoformans. Overall, this ring-opened scafford of benzothienoquinolines, with substitution on the thiophenyl moiety, serves as a new lead for further development.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。