Phosphorylation of mitogen- and stress-activated protein kinase-1 in astrocytic inflammation: a possible role in inhibiting production of inflammatory cytokines

星形胶质细胞炎症中丝裂原和应激活化蛋白激酶-1 的磷酸化:可能在抑制炎症细胞因子产生中发挥作用

阅读:4
作者:Peipei Gong, Xide Xu, Jinlong Shi, Lanchun Ni, Qingfeng Huang, Liang Xia, Dekang Nie, Xiaojian Lu, Jian Chen, Wei Shi

Conclusions

Collectively, these results suggest that MSK1 phosphorylation is associated with the regulation of LPS-induced brain injury and possibly acts as a negative regulator of inflammation.

Methods

The bacterial lipopolysaccharide (LPS)-induced brain injury model was performed on Sprague-Dawley rats. The dynamic expression changes and the cellular location of p-MSK1 in the brain cortex were detected by Western blot and immunofluorescence staining. The synthesis of inflammatory cytokines in astrocytes was detected by enzyme-linked immunosorbent assay (ELISA).

Purpose

It is generally accepted that inflammation has a role in the progression of many central nervous system (CNS) diseases, although the mechanisms through which this occurs remain unclear. Among mitogen-activated protein kinase (MAPK) targets, mitogen- and stress-activated protein kinase (MSK1) has been thought to be involved in the pathology of inflammatory gene expression. In this study, the roles of MSK1 activation in neuroinflammation were investigated.

Results

Phosphorylated MSK1 (p-MSK1 Thr-581) was induced significantly after intracerebral injection of LPS into the lateral ventricles of the rat brain. Specific upregulation of p-MSK1 in astrocytes was also observed in inflamed cerebral cortex. At 1 day after LPS stimulation, iNOS, TNFα expression, and the astrocyte marker glial fibrillary acidic protein (GFAP) were increased significantly. Also, in vitro studies indicated that the upregulation of p-MSK1 (Thr-581) may be involved in the subsequent astrocyte inflammatory process, following LPS challenge. Using an enzyme-linked immunosorbent assay (ELISA), it was confirmed that treatment with LPS in primary astrocytes stimulated the synthesis of inflammatory cytokines, through MAPKs signaling pathways. In cultured primary astrocytes, both knock-down of total MSK1 by small interfering RNAs (siRNA) or specific mutation of Thr-581 resulted in higher production of certain cytokines, such as TNFα and IL-6. Conclusions: Collectively, these results suggest that MSK1 phosphorylation is associated with the regulation of LPS-induced brain injury and possibly acts as a negative regulator of inflammation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。