Beyond Traditional Methods: Deep-Learning Machines Empower Fingerroot (Boesenbergia rotunda)-Extract Production with Superior Antioxidant Activity

超越传统方法:深度学习机器助力指根(Boesenbergia rotunda)提取物生产,具有卓越的抗氧化活性

阅读:4
作者:Padej Pao-la-Or, Kakanang Posridee, Pussarat Buranakon, Jittra Singthong, Jirawan Oonmetta-Aree, Ratchadaporn Oonsivilai, Anant Oonsivilai

Abstract

This study investigated the impact of drying parameters on the quality of fingerroot (Boesenbergia rotunda) extract, focusing on phenolic compounds, flavonoids, and antioxidant activity. A Box-Behngen design was employed to evaluate the effects of maltodextrin concentration, inlet temperature, and outlet temperature on the extract's properties. The highest total phenolic content (18.96 µg of GAE/mg extract) and total flavonoid content (33.52 µg of GE/mg extract) were achieved using 20% maltodextrin, a 160 °C inlet temperature, and an 80 °C outlet temperature. Antioxidant activity, measured by DPPH and FRAP assays, was also influenced by drying parameters. Stepwise regression analysis revealed that maltodextrin concentration significantly affected all responses, while the inlet temperature had no significant effect. The outlet temperature significantly influenced FRAP activity. The developed mathematical models accurately predicted experimental values, validating the effectiveness of the RSM and Deep-Learning Machine. Optimal drying conditions for maximizing phenolic compounds were determined to be 20% maltodextrin, a 150 °C inlet temperature, and a 70 °C outlet temperature, resulting in TPC 15.33 µg of GAE/mg extract, TF 28.75 µg of GE/mg extract, IC50 value of 3.99 µg/mL, FRAP value at 4.44 µmoL Fe2+/mg extract of phenolic content, and 18.96 µg of the GAE/mg extract. Similar conditions were found to be optimal for maximizing flavonoid content. These findings provide valuable insights for optimizing the drying process of fingerroot extract to preserve its bioactive compounds and enhance its potential applications.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。