Propofol inhibited autophagy through Ca2+/CaMKKβ/AMPK/mTOR pathway in OGD/R-induced neuron injury

丙泊酚通过 Ca2+/CaMKKβ/AMPK/mTOR 通路抑制 OGD/R 诱导的神经元损伤中的自噬

阅读:4
作者:Bei Sun, Hao Ou, Fei Ren, Ye Huan, Tao Zhong, Min Gao, Hongwei Cai

Background

The neuroprotective role of propofol (PPF) in cerebral ischemia-reperfusion (I/R) has recently been highlighted. This study aimed to explore whether the neuroprotective mechanisms of PPF were linked to its regulation of Ca2+/CaMKKβ (calmodulin-dependent protein kinase kinase β)/AMPK (AMP-activated protein kinase)/mTOR (mammalian target of rapamycin)/autophagy pathway.

Conclusion

Our findings demonstrate that PPF antagonized OGD/R-triggered neuronal injury, which might be mediated, at least in part, via inhibition of autophagy through Ca2+/CaMKKβ/AMPK/mTOR pathway.

Methods

Cultured primary rat cerebral cortical neurons were treated with oxygen-glucose deprivation and re-oxygenation (OGD/R) to mimic cerebral I/R injury in vitro.

Results

Compared with the control neurons, OGD/R exposure successfully induced neuronal I/R injury. Furthermore, OGD/R exposure notably caused autophagy induction, reflected by augmented LC3-II/LC3-I ratio and Beclin 1 expression, decreased p62 expression, and increased LC3 puncta formation. Moreover, OGD/R exposure induced elevation of intracellular Ca2+ concentration ([Ca2+]i). However, PPF treatment significantly antagonized OGD/R-triggered cell injury, autophagy induction, and [Ca2+]i elevation. Further investigation revealed that both autophagy induction by rapamycin and [Ca2+]i elevation by the Ca2+ ionophore ionomycin significantly reversed the PPF-mediated amelioration of OGD/R-triggered cell injury. Importantly, ionomycin also significantly abrogated the PPF-mediated suppression of autophagy and CaMKKβ/AMPK/mTOR signaling in OGD/R-exposed neurons. Additionally, activation of CaMKKβ/AMPK/mTOR signaling abrogated the PPF-mediated autophagy suppression.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。