Upregulated IL-1 Receptor-associated Kinase 1 (IRAK1) in Systemic Lupus Erythematosus: IRAK1 Inhibition Represses Th17 Differentiation with Therapeutic Potential

系统性红斑狼疮中 IL-1 受体相关激酶 1 (IRAK1) 上调:IRAK1 抑制可抑制 Th17 分化并具有治疗潜力

阅读:5
作者:Zhou Zhou, Zhiqiang Tian, Mengjie Zhang, Yuxun Zhang, Bing Ni, Fei Hao

Abstract

Systemic lupus erythematosus (SLE) is a typical autoimmune disease. Genome-wide analyses have revealed that interleukin-1 receptor-associated kinase 1 (IRAK1) is associated with susceptibility to SLE. Our previous study investigated the role of IRAK1 in nuclear factor-κB (NF-κB)-related pathways in a mouse model of lupus. In this study, we aimed to further explore the etiological role of IRAK1. The gene expression and phosphorylation of IRAK1 in CD4+ T cells from lupus patients and healthy controls were examined by quantitative reverse transcription-polymerase chain reaction and western blotting, respectively. The percentage of circulating Th17 cells and plasma IL-17A levels were evaluated by flow cytometry and enzyme-linked immunosorbent assay, respectively. The influence of IRAK1 suppression on Th17 development was assessed using an IRAK1 inhibitor and small interfering RNA. We found that IRAK1 transcript levels in CD4+ T cells were significantly upregulated in SLE patients in comparison to controls and were positively correlated with disease activity. In vitro experiments showed that lupus CD4+ T cells had more pronounced IRAK1 phosphorylation at threonine-209 upon IL-1β stimulation than did control cells. Moreover, IRAK1 expression was positively associated with Th17/IL-17A in patients. When naïve CD4+ T cells were polarized toward the Th17 subset, IRAK1 inhibition significantly repressed IL-17A production and the gene expression of Th17 markers, namely, retinoic acid receptor-related orphan receptor c, IL-23 receptor and IL-17A. In summary, IRAK1 is overexpressed and hyperactivated in CD4+ T cells from SLE patients. IRAK1 inhibition attenuates Th17 differentiation in the context of human SLE, suggesting a therapeutic opportunity.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。