Dopamine D2 receptor and β-arrestin 2 mediate Amyloid-β elevation induced by anti-parkinson's disease drugs, levodopa and piribedil, in neuronal cells

多巴胺 D2 受体和 β-arrestin 2 介导抗帕金森病药物左旋多巴和吡贝地尔引起的神经元细胞淀粉样蛋白-β 升高

阅读:6
作者:Jing Lu, Xiaohang Li, Qinying Wang, Gang Pei

Abstract

Although levodopa is the first-line medication for the treatment of Parkinson's disease (PD) showing unsurpassable efficiency, its chronic use causes dyskinesia. Accordingly, dopamine agonists are increasingly employed as monotherapy or in combination with levodopa to reduce the risk of motor complications. It is well recognized that patients with PD often exhibit cognitive deficits. However, clinical and animal studies assessing the effects of dopaminergic medications on cognition are controversial. Amyloid-β (Aβ) is one of the major hallmarks of Alzheimer's disease (AD), leading to progressive memory loss and cognitive deficit. Interestingly, the abnormal accumulation of Aβ is also detected in PD patients with cognitive deficits. Evidence indicated that levodopa induced a mild increase of Aβ plaque number and size in the brain of AD mouse. However, the underlying mechanism is unclear. Here we present that both levodopa and piribedil enhance the generation of Aβ and the activity of γ-secretase in human neuronal cells and primary neurons isolated from AD mouse. This effect was reduced by either the antagonism or the knockdown of dopamine D2 receptor (D2R). We further showed that in the cells expressing β-arrestin 2-biased D2R mutant, piribedil promoted cellular Aβ production to the extent comparable to the wild-type D2R whereas this activity was absent in those with G protein-biased D2R mutant. Moreover, the knockdown of β-arrestin 2 attenuated the increases of Aβ generation and γ-secretase activity mediated by levodopa or piribedil. Thus, our study suggests that targeting D2R-mediated β-arrestin function may have potential risk in the modulation of Aβ pathology.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。