Higher Matrix Stiffness Upregulates Osteopontin Expression in Hepatocellular Carcinoma Cells Mediated by Integrin β1/GSK3β/β-Catenin Signaling Pathway

更高的基质硬度通过整合素 β1/GSK3β/β-Catenin 信号通路上调肝细胞癌细胞中的骨桥蛋白表达

阅读:8
作者:Yang You, Qiongdan Zheng, Yinying Dong, Yaohui Wang, Lan Zhang, Tongchun Xue, Xiaoying Xie, Chao Hu, Zhiming Wang, Rongxin Chen, Yanhong Wang, Jiefeng Cui, Zhenggang Ren

Abstract

Increased stromal stiffness is associated with hepatocellular carcinoma (HCC) development and progression. However, the molecular mechanism by which matrix stiffness stimuli modulate HCC progress is largely unknown. In this study, we explored whether matrix stiffness-mediated effects on osteopontin (OPN) expression occur in HCC cells. We used a previously reported in vitro culture system with tunable matrix stiffness and found that OPN expression was remarkably upregulated in HCC cells with increasing matrix stiffness. Furthermore, the phosphorylation level of GSK3β and the expression of nuclear β-catenin were also elevated, indicating that GSK3β/β-catenin pathway might be involved in OPN regulation. Knock-down analysis of integrin β1 showed that OPN expression and p-GSK3β level were downregulated in HCC cells grown on high stiffness substrate compared with controls. Simultaneously, inhibition of GSK-3β led to accumulation of β-catenin in the cytoplasm and its enhanced nuclear translocation, further triggered the rescue of OPN expression, suggesting that the integrin β1/GSK-3β/β-catenin pathway is specifically activated for matrix stiffness-mediated OPN upregulation in HCC cells. Tissue microarray analysis confirmed that OPN expression was positively correlated with the expression of LOX and COL1. Taken together, high matrix stiffness upregulated OPN expression in HCC cells via the integrin β1/GSK-3β/β-catenin signaling pathway. It highlights a new insight into a pathway involving physical mechanical signal and biochemical signal molecules which contributes to OPN expression in HCC cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。