Intranasally applied neuropeptide S shifts a high-anxiety electrophysiological endophenotype in the ventral hippocampus towards a "normal"-anxiety one

鼻腔内应用神经肽 S 可使腹侧海马中的高焦虑电生理内表型转变为“正常”焦虑内表型

阅读:9
作者:Julien Dine, Irina A Ionescu, Charilaos Avrabos, Yi-Chun Yen, Florian Holsboer, Rainer Landgraf, Ulrike Schmidt, Matthias Eder

Abstract

The neurobiological basis of pathological anxiety and the improvement of its pharmacological treatment are a matter of intensive investigation. Here, using electrophysiological techniques in brain slices from animals of the high anxiety-related behavior (HAB) and normal anxiety-related behavior (NAB) mouse model, we show that basal neurotransmission at ventral hippocampal CA3-CA1 synapses is weaker in HAB compared to NAB mice. We further demonstrate that paired-pulse facilitation (PPF) and long-term potentiation (LTP) at these synapses are more pronounced in slices from HAB animals. Based on previous findings, we also examined whether intranasal delivery of neuropeptide S (NPS), which increasingly emerges as a potential novel treatment option for anxiety symptoms occurring in a variety of diseases like anxiety disorders, posttraumatic stress disorder, and major depression, impacts on the high-anxiety electrophysiological endophenotype in HAB mice. Strikingly, we detected enhanced basal neurotransmission and reduced PPF and LTP in slices from NPS-treated HAB animals. Collectively, our study uncovers a multifaceted high-anxiety neurophysiological endophenotype in the murine ventral hippocampus and provides the first evidence that an intranasally applied neuropeptide can shift such an endophenotype in an anxiety-regulating brain structure towards a "normal"-anxiety one.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。