Sigma factor N, liaison to an ntrC and rpoS dependent regulatory pathway controlling acid resistance and the LEE in enterohemorrhagic Escherichia coli

Sigma 因子 N,与控制肠出血性大肠杆菌的耐酸性和 LEE 的 ntrC 和 rpoS 依赖性调节通路有关

阅读:5
作者:Avishek Mitra, Pamela A Fay, Jason K Morgan, Khoury W Vendura, Salvatore L Versaggi, James T Riordan

Abstract

Enterohemorrhagic Escherichia coli (EHEC) is dependent on acid resistance for gastric passage and low oral infectious dose, and the locus of enterocyte effacement (LEE) for intestinal colonization. Mutation of rpoN, encoding sigma factor N (σ(N)), dramatically alters the growth-phase dependent regulation of both acid resistance and the LEE. This study reports on the determinants of σ(N)-directed acid resistance and LEE expression, and the underlying mechanism attributable to this phenotype. Glutamate-dependent acid resistance (GDAR) in TW14359ΔrpoN correlated with increased expression of the gadX-gadW regulatory circuit during exponential growth, whereas upregulation of arginine-dependent acid resistance (ADAR) genes adiA and adiC in TW14359ΔrpoN did not confer acid resistance by the ADAR mechanism. LEE regulatory (ler), structural (espA and cesT) and effector (tir) genes were downregulated in TW14359ΔrpoN, and mutation of rpoS encoding sigma factor 38 (σ(S)) in TW14359ΔrpoN restored acid resistance and LEE genes to WT levels. Stability, but not the absolute level, of σ(S) was increased in TW14359ΔrpoN; however, increased stability was not solely attributable to the GDAR and LEE expression phenotype. Complementation of TW14359ΔrpoN with a σ(N) allele that binds RNA polymerase (RNAP) but not DNA, did not restore WT levels of σ(S) stability, gadE, ler or GDAR, indicating a dependence on transcription from a σ(N) promoter(s) and not RNAP competition for the phenotype. Among a library of σ(N) enhancer binding protein mutants, only TW14359ΔntrC, inactivated for nitrogen regulatory protein NtrC, phenocopied TW14359ΔrpoN for σ(S) stability, GDAR and ler expression. The results of this study suggest that during exponential growth, NtrC-σ(N) regulate GDAR and LEE expression through downregulation of σ(S) at the post-translational level; likely by altering σ(S) stability or activity. The regulatory interplay between NtrC, other EBPs, and σ(N)-σ(S), represents a mechanism by which EHEC can coordinate GDAR, LEE expression and other cellular functions, with nitrogen availability and physiologic stimuli.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。