Co-Encapsulation of Multiple Polyphenols in Plant-Based Milks: Formulation, Gastrointestinal Stability, and Bioaccessibility

植物奶中多种多酚的共包封:配方、胃肠道稳定性和生物可及性

阅读:10
作者:Bingjing Zheng, Hualu Zhou, David Julian McClements

Abstract

Plant-based milk is particularly suitable for fortification with multiple nutraceuticals because it contains both hydrophobic and hydrophilic domains that can accommodate molecules with different polarities. In this study, we fortified soymilk with three common polyphenols (curcumin, quercetin, and resveratrol) using three pH-driven approaches. We compared the effectiveness of these three different approaches for co-encapsulating polyphenols. The gastrointestinal fate of the polyphenol-fortified soymilks was then studied by passing them through a simulated mouth, stomach, and small intestine, including the stability and bioaccessibility of polyphenols. All three pH-driven approaches were suitable for co-encapsulating multiple polyphenols at a high encapsulation efficiency, especially for the curcumin and resveratrol. The polyphenol-loaded delivery systems exhibited similar changes in particle size, charge, stability, and bioaccessibility as they passed through the mouth, stomach, and intestinal phases. The bioaccessibility of the co-encapsulated polyphenols was much greater than that of crystallized polyphenols dispersed in water. The poor bioaccessibility of the crystallized polyphenols was attributed to their low solubility in water, which made them more difficult to solubilize within mixed micelles. This study underscores the feasibility of pH-driven approaches for encapsulating a variety of polyphenols into the same plant-based delivery system. These fortified plant-based milks may therefore be designed to provide specific health benefits to consumers.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。