Photovoltaic Performance of 4,8-Bis(2'-ethylhexylthiophene)thieno[2,3- f]benzofuran-Based Dyes Fabricated with Different Donors in Dye-Sensitized Solar Cells

不同供体制备的 4,8-双(2'-乙基己基噻吩)噻吩并[2,3-f]苯并呋喃类染料在染料敏化太阳能电池中的光伏性能

阅读:4
作者:Jun Liu, Yun Luo, Lang Li, Gang Wang, Xiaobo Wang, Yuandao Chen, Bo Liu

Abstract

Thieno[2,3-f]benzofuran (BDF) has the advantages of a highly planarized structure, strong electron-donating ability, high hole mobility, good conjugation, and a wide spectral response range. In recent years, BDF has been widely used in organic solar cells, especially in bulk-heterojunction (BHJ) organic solar cells. In this work, a model molecule PSB-1 was synthesized based on this highly planar fragment and used as a photosensitizer in dye-sensitized solar cells (DSCs), then different aromatic amine donors such as triphenylamine (TPA), carbazole (CZ), and phenothiazine (PTZ) were introduced to the end of PSB-1, and a series of dyes PSB-2, PSB-3, and PSB-4 were designed and synthesized. After that, the relationship among the molecular structure, energy level, and photovoltaic performance of the benzo-[1,2-b:4,5-b']dithiophene (BDT) dye was studied by theoretical calculations, photophysics, electrochemistry, and photovoltaic properties. The results show that the introduction of a strong donor can effectively improve the energy level, absorption spectrum, and photovoltaic performance of PSB-1. Through the preliminary test, we found that the energy conversion efficiency (photovoltaic conversion efficiency-PCE) of PSB-4 is up to 5.5%, which is nearly 90% higher than that of PSB-1 (PCE = 2.9%), while the introduction of a weak donor greatly weakens the effect, in which the PCE of PSB-3 is 3.5%, which is only 20% higher than that of the model molecule. By an analysis of the molecular frontier orbital distribution using theoretical calculations, we found that the electron cloud of the highest occupied orbital level (highest occupied molecular orbital-HOMO) of PSB-3 is mainly distributed on the BDF group so that the electron transfer of excited-state molecules mainly occurs from the BDF to the receptor (CA).

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。