Human sensory-like neuron cultivation-An optimized protocol

人类感觉神经元培养——优化方案

阅读:8
作者:Nicole Michelle Schottmann, Julia Grüner, Frederik Bär, Franziska Karl-Schöller, Sabrina Oerter, Nurcan Üçeyler

Conclusion

In direct comparison with other methods, treatment with 10 μM FdU for 24 h after differentiation shows promise for improving iSN culture purity, which could benefit downstream applications in disease modeling and drug discovery. However, further investigations involving multiple iPSC lines and optimization of protocol parameters are warranted to fully exploit the potential of this method and enhance its reproducibility and applicability. Overall, this study provides valuable insights into optimizing culture conditions for iSN differentiation and highlights the importance of standardized protocols in iPSC-based research.

Methods

iSNs were differentiated from a healthy control iPSC line using an established protocol. Interventions for protocol optimization included floxuridine (FdU) or 1-β-D-arabinofuranosyl-cytosine hydrochloride (AraC) treatment, magnetic-activated cell sorting (MACS), early cell passaging, and replating. Cell viability and iSN-to-total-cell-count ratio were assessed using a luminescent assay and immunocytochemistry, respectively.

Results

Passaging of cells during differentiation did not increase the iSN-to-total-cell-count ratio, and MACS of immature iSNs led to neuronal blebbing and reduced the iSN-to-total-cell-count ratio. Treatment with high concentrations and prolonged incubation of FdU or AraC resulted in excessive cell death. However, treatment with 10 μM FdU for 24 h post-differentiation showed the most selective targeting of non-iSN cells, leading to an increase in the iSN-to-total-cell count ratio without compromising the viability or functionality of the iSN population. Replating of iSNs shortly after seeding also helped to reduce non-iSN cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。