Next-generation sequencing identifies novel genes with rare variants in total anomalous pulmonary venous connection

下一代测序技术识别出完全性肺静脉异位引流中具有罕见变异的新基因

阅读:7
作者:Xin Shi, Tao Huang, Jing Wang, Yulai Liang, Chang Gu, Yuejuan Xu, Jing Sun, Yanan Lu, Kun Sun, Sun Chen, Yu Yu

Background

Total anomalous pulmonary venous connection (TAPVC) is recognized as a rare congenital heart defect (CHD). With a high mortality rate of approximately 80%, the survival rate and outcomes of TAPVC patients are not satisfactory. However, the genetic aetiology and mechanism of TAPVC remain elusive. This study aimed to investigate the underlying genomic risks of TAPVC through next-generation sequencing (NGS).

Methods

Rare variants were identified through whole exome sequencing (WES) of 78 sporadic TAPVC cases and 100 healthy controls using Fisher's exact test and gene-based burden test. We then detected candidate gene expression patterns in cells, pulmonary vein tissues, and embryos. Finally, we validated these genes using target sequencing (TS) in another 100 TAPVC cases. Findings: We identified 42 rare variants of 7 genes (CLTCL1, CST3, GXYLT1, HMGA2, SNAI1, VAV2, ZDHHC8) in TAPVC cases compared with controls. These genes were highly expressed in human umbilical vein endothelial cells (HUVECs), mouse pulmonary veins and human embryonic hearts. mRNA levels of these genes in human pulmonary vein samples were significantly different between cases and controls. Through network analysis and expression patterns in zebrafish embryos, we revealed that SNAI1, HMGA2 and VAV2 are the most important genes for TAPVC. Interpretation: Our study identifies novel candidate genes potentially related to TAPVC and elucidates the possible molecular pathogenesis of this rare congenital birth defect. Furthermore, SNAI1, HMGA2 and VAV2 are novel TAPVC candidate genes that have not been reported previously in either humans or animals. FUND: National Natural Science Foundation of China.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。