Activated Drp1 regulates p62-mediated autophagic flux and aggravates inflammation in cerebral ischemia-reperfusion via the ROS-RIP1/RIP3-exosome axis

激活的 Drp1 通过 ROS-RIP1/RIP3-外泌体轴调节 p62 介导的自噬通量并加重脑缺血再灌注炎症

阅读:5
作者:Xue Zeng, Yun-Dong Zhang, Rui-Yan Ma, Yuan-Jing Chen, Xin-Ming Xiang, Dong-Yao Hou, Xue-Han Li, He Huang, Tao Li, Chen-Yang Duan

Background

Cerebral ischemia-reperfusion injury (CIRI) refers to a secondary brain injury that can occur when the blood supply to the ischemic brain tissue is restored. However, the mechanism underlying such injury remains elusive.

Conclusions

CIRI activated Drp1 and accelerated the p62-mediated formation of autophagosomes while inhibiting the transition of autophagosomes to autolysosomes via the RIP1/RIP3 pathway activation. Undegraded autophagosomes were secreted extracellularly in the form of exosomes, leading to inflammatory cascades that further damaged mitochondria, resulting in excessive ROS generation and the blockage of autophagosome degradation, triggering a vicious cycle.

Methods

The 150 male C57 mice underwent middle cerebral artery occlusion (MCAO) for 1 h and reperfusion for 24 h, Among them, 50 MCAO mice were further treated with Mitochondrial division inhibitor 1 (Mdivi-1) and 50 MCAO mice were further treated with N-acetylcysteine (NAC). SH-SY5Y cells were cultured in a low-glucose culture medium for 4 h under hypoxic conditions and then transferred to normal conditions for 12 h. Then, cerebral blood flow, mitochondrial structure, mitochondrial DNA (mtDNA) copy number, intracellular and mitochondrial reactive oxygen species (ROS), autophagic flux, aggresome and exosome expression profiles, cardiac tissue structure, mitochondrial length and cristae density, mtDNA and ROS content, as well as the expression of Drp1-Ser616/Drp1, RIP1/RIP3, LC3 II/LC3 I, TNF-α, IL-1β, etc., were detected under normal or Drp1 interference conditions.

Results

The mtDNA content, ROS levels, and Drp1-Ser616/Drp1 were elevated by 2.2, 1.7 and 2.7 times after CIRI (P < 0.05). However, the high cytoplasmic LC3 II/I ratio and increased aggregation of p62 could be reversed by 44% and 88% by Drp1 short hairpin RNA (shRNA) (P < 0.05). The low fluorescence intensity of autophagic flux and the increased phosphorylation of RIP3 induced by CIRI could be attenuated by ROS scavenger, NAC (P < 0.05). RIP1/RIP3 inhibitor Necrostatin-1 (Nec-1) restored 75% to a low LC3 II/LC3 I ratio and enhanced 2 times to a high RFP-LC3 after Drp1 activation (P < 0.05). In addition, although CIRI-induced ROS production caused no considerable accumulation of autophagosomes (P > 0.05), it increased the packaging and extracellular secretion of exosomes containing p62 by 4 - 5 times, which could be decreased by Mdivi-1, Drp1 shRNA, and Nec-1 (P < 0.05). Furthermore, TNF-α and IL-1β increased in CIRI-derived exosomes could increase RIP3 phosphorylation in normal or oxygen-glucose deprivation/reoxygenation (OGD/R) conditions (P < 0.05). Conclusions: CIRI activated Drp1 and accelerated the p62-mediated formation of autophagosomes while inhibiting the transition of autophagosomes to autolysosomes via the RIP1/RIP3 pathway activation. Undegraded autophagosomes were secreted extracellularly in the form of exosomes, leading to inflammatory cascades that further damaged mitochondria, resulting in excessive ROS generation and the blockage of autophagosome degradation, triggering a vicious cycle.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。