Effect of protein aggregation in wheat-legume mixed pasta diets on their in vitro digestion kinetics in comparison to "rapid" and "slow" animal proteins

与“快速”和“慢速”动物蛋白相比,小麦-豆类混合面食中蛋白质聚集对其体外消化动力学的影响

阅读:7
作者:Insaf Berrazaga, Claire Bourlieu-Lacanal, Karima Laleg, Julien Jardin, Valérie Briard-Bion, Didier Dupont, Stéphane Walrand, Valérie Micard

Abstract

The aim of this work was to evaluate the impact of incorporating different legume flours (faba bean, lentil or split pea flours) on the pasta protein network and its repercussion on in vitro protein digestibility, in comparison with reference dairy proteins. Kinetics and yields of protein hydrolysis in legume enriched pasta and, for the first time, the peptidomes generated by the pasta at the end of the in vitro gastric and intestinal phases of digestion are presented. Three isoproteic (21%) legume enriched pasta with balanced essential amino acids, were made from wheat semolina and 62% to 79% of legume flours (faba bean or F-pasta; lentil or L-pasta and split pea or P-pasta). Pasta were prepared following the conventional pastification steps (hydration, mixing, extrusion, drying, cooking). Amino acid composition and protein network structure of the pasta were determined along with their culinary and rheological properties and residual trypsin inhibitor activity (3-5% of the activity initially present in raw legume flour). F- and L-pasta had contrasted firmness and proportion of covalently linked proteins. F-pasta had a generally weaker protein network and matrix structure, however far from the weakly linked soluble milk proteins (SMP) and casein proteins, which in addition contained no antitrypsin inhibitors and more theoretical cleavage sites for digestive enzymes. The differences in protein network reticulation between the different pasta and between pasta and dairy proteins were in agreement in each kinetic phase with the yield of the in vitro protein hydrolysis, which reached 84% for SMP, and 66% for casein at the end of intestinal phase, versus 50% for L- and P-pasta and 58% for F-pasta. The peptidome of legume enriched pasta is described for the first time and compared with the peptidome of dairy proteins for each phase of digestion. The gastric and intestinal phases were important stages of peptide differentiation between legumes and wheat. However, peptidome analysis revealed no difference in wheat-derived peptides in the three pasta diets regardless of the digestion phase, indicating that there was a low covalent interaction between wheat gluten and legume proteins.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。