Single-Walled Carbon Nanohorn-Based Fluorescence Energy Resonance Transfer Aptasensor Platform for the Detection of Aflatoxin B1

基于单壁碳纳米角的荧光能量共振转移适体传感器平台用于检测黄曲霉毒素B1

阅读:10
作者:Yiting Fan, Huanhuan Yang, Jiaxin Li, Khalid Amin, Bo Lyu, Wendan Jing, Sainan Wang, Hongling Fu, Hansong Yu, Zhijun Guo

Abstract

Aflatoxin B1 (AFB1) is one of the most contaminated fungal toxins worldwide and is prone to cause serious economic losses, food insecurity, and health hazards to humans. The rapid, on-site, and economical method for AFB1 detection is need of the day. In this study, an AFB1 aptamer (AFB1-Apt) sensing platform was established for the detection of AFB1. Fluorescent moiety (FAM)-modified aptamers were used for fluorescence response and quenching, based on the adsorption quenching function of single-walled carbon nanohorns (SWCNHs). Basically, in our constructed sensing platform, the AFB1 specifically binds to AFB1-Apt, making a stable complex. This complex with fluorophore resists to be adsorbed by SWCNHs, thus prevent SWCNHs from quenching of fluorscence, resulting in a fluorescence response. This designed sensing strategy was highly selective with a good linear response in the range of 10-100 ng/mL and a low detection limit of 4.1 ng/mL. The practicality of this sensing strategy was verified by using successful spiking experiments on real samples of soybean oil and comparison with the enzyme-linked immunosorbent assay (ELISA) method.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。