Resolution of liver fibrosis by isoquinoline alkaloid berberine in CCl₄-intoxicated mice is mediated by suppression of oxidative stress and upregulation of MMP-2 expression

异喹啉生物碱小檗碱可缓解 CCl₄ 中毒小鼠的肝纤维化,其机制是通过抑制氧化应激和上调 MMP-2 表达来实现的

阅读:6
作者:Robert Domitrović, Hrvoje Jakovac, Vanja Vasiljev Marchesi, Biljana Blažeković

Abstract

Liver fibrosis is the result of chronic liver injury, and it represents a widespread medical problem. The aim of this study is to investigate the antifibrotic activity of isoquinoline alkaloid berberine in carbon tetrachloride (CCl&sub4;)-induced damage in mice. Hepatic fibrosis was induced by intraperitoneal (i.p.) administration of CCl&sub4; (2 mL/kg, 20% v/v in olive oil) twice a week for 8 weeks. Berberine at the doses of 3 and 9 mg/kg and silymarin at the dose of 50 mg/kg were given i.p. once daily for the next 2 weeks. CCl&sub4; intoxication increased the levels of serum transaminases and induced oxidative stress in the liver. Hepatic fibrosis was evidenced by a massive deposition of collagen, which coincided with increased expression of tumor necrosis factor (TNF)-α and transforming growth factor (TGF)-β1 and the activation of hepatic stellate cells. The high-dose berberine (9 mg/kg) ameliorated oxidative stress, decreased TNF-α and TGF-β1 expression, increased the levels of matrix metalloproteinase (MMP)-2, and stimulated the elimination of fibrous deposits. Berberine at the dose of 9 mg/kg exhibited stronger therapeutic activity against hepatic fibrosis than silymarin at the dose of 50 mg/kg. In vitro analyses show an important scavenging activity of berberine against oxygen and nitrogen reactive species. The results of this study suggest that berberine could ameliorate liver fibrosis through the suppression of hepatic oxidative stress and fibrogenic potential, concomitantly stimulating the degradation of collagen deposits by MMP-2.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。