Analysis of the chemical constituents and their metabolites in Orthosiphon stamineus Benth. via UHPLC-Q exactive orbitrap-HRMS and AFADESI-MSI techniques

通过 UHPLC-Q 精确轨道阱-HRMS 和 AFADESI-MSI 技术分析大叶紫草中的化学成分及其代谢物

阅读:5
作者:Jianting Ouyang, Danyao Lin, Xuesheng Chen, Yimeng Li, Qin Liu, Delun Li, Haohao Quan, Xinwen Fu, Qiaoru Wu, Xiaowan Wang, Shouhai Wu, Chuang Li, Yi Feng, Wei Mao

Background

Known for its strong diuretic properties, the perennial herbaceous plant Orthosiphon stamineus Benth. is believed to preserve the kidney disease. This study compared the boiling water extract with powdered Orthosiphon stamineus Benth. and used a highly sensitive and high resolution UHPLC-Q-Exactive-Orbitrap-HRMS technology to evaluate its chemical composition.

Results

Furthermore, by monitoring the absorption of prototype components in rat plasma following oral treatment, the beneficial ingredients of the Orthosiphon stamineus Benth. decoction was discovered. Approximately 92 substances underwent a preliminary identification utilizing relevant databases, relevant literature, and reference standards. As the compound differences between the powdered Orthosiphon stamineus Benth. and its water decoction were analyzed, it was found that boiling produced additional compounds, 48 of which were new. 45 blood absorption prototype components and 49 OS metabolites were discovered from rat serum, and a kidney tissue homogenate revealed an additional 28 prototype components. Early differences in the distribution of ferulic acid, cis 4 coumaric acid, and rosmarinic acid were shown using spatial metabolomics. It was elucidated that the renal cortex region is where rosmarinic acid largely acts, offering a theoretical foundation for further studies on the application of OS in the prevention and treatment of illness as well as the preservation of kidney function. Significance: In this study, UHPLC-Q Exactive Orbitrap-HRMS was employed to discern OS's chemical composition, and a rapid, sensitive, and broad-coverage AFADESI-MSI method was developed to visualize the spatial distribution of compounds in tissues.

Significance

In this study, UHPLC-Q Exactive Orbitrap-HRMS was employed to discern OS's chemical composition, and a rapid, sensitive, and broad-coverage AFADESI-MSI method was developed to visualize the spatial distribution of compounds in tissues.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。