Non-Targeted LC-MS Metabolomics Approach towards an Authentication of the Geographical Origin of Grain Maize (Zea mays L.) Samples

非靶向 LC-MS 代谢组学方法用于鉴定玉米 (Zea mays L.) 样品的地理来源

阅读:7
作者:David Schütz, Elisabeth Achten, Marina Creydt, Janet Riedl, Markus Fischer

Abstract

Safety along the food and feed supply chain is an emerging topic and closely linked to the ability to analytical trace the geographical origin of food or feed. In this study, ultra-performance liquid chromatography coupled with electrospray ionization quadrupole-time-of-flight mass spectrometry was used to trace back the geographical origin of 151 grain maize (Zea mays L.) samples from seven countries using a high resolution non-targeted metabolomics approach. Multivariate data analysis and univariate statistics were used to identify promising marker features related to geographical origin. Classification using only 20 selected markers with the Random Forest algorithm led to 90.5% correctly classified samples with 100 times repeated 10-fold cross-validation. The selected markers were assigned to the class of triglycerides, diglycerides and phospholipids. The marker set was further evaluated for its ability to separate between one sample class and the rest of the dataset, yielding accuracies above 89%. This demonstrates the high potential of the non-polar metabolome to authenticate the geographic origin of grain maize samples. Furthermore, this suggests that focusing on only a few lipids with high potential for grain maize authentication could be a promising approach for later transfer of the method to routine analysis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。