Effects of High Hydrostatic Pressure on the Distribution of Oligosaccharides, Pinitol, Soysapapogenol A, and Fatty Acids in Soybean

高压对大豆中寡糖、松醇、大豆皂苷 A 和脂肪酸分布的影响

阅读:5
作者:Shigeaki Ueno, Hsiuming Liu, Risa Kishino, Yuka Oshikiri, Yuki Kawaguchi, Akio Watanabe, Wataru Kobayashi, Reiko Shimada

Abstract

The effects of high hydrostatic pressure (HHP) treatment (100-600 MPa for 10-60 min) and thermal treatment (boiling for 10-60 min) on oligosaccharides, pinitol, and soyasapogenol A as taste ingredients in soybean (Glycine max (L.) Merr.) (cv. Yukihomare) were evaluated. Additionally, soybean-derived fatty acids such as α-linolenic acid, linoleic acid, oleic acid, palmitic acid, and stearic acid in pressurized soybeans were quantitatively analyzed. Sucrose, stachyose, and raffinose concentrations were decreased in all tested pressure and time combinations; however, pinitol concentrations were increased by specific pressure and time combinations at 100-400 MPa for 10-60 min. While the soyasapogenol A content in boiled soybeans decreased with increasing boiling time, that of pressurized soybeans was altered by specific pressure and time combinations. At the lower pressure and shorter time combinations, the essential fatty acids such as α-linolenic acid and linoleic acid showed higher contents. Stearic acid and oleic acid contents of pressurized soybeans increased at mild pressure levels (300-500 MPa). In contrast, the combination of higher pressure and longer time results in lower essential fatty acid contents. Non-thermal-pressurized soybeans have the potential to be a high-value food source with better taste due to the enrichment of low molecular weight components such as pinitol, free amino acids, and the reduction of isoflavones and Group A soyasapogenol.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。