Augmentation of antitumor immunity by fusions of ethanol-treated tumor cells and dendritic cells stimulated via dual TLRs through TGF-β1 blockade and IL-12p70 production

通过 TGF-β1 阻断和 IL-12p70 产生,将乙醇处理的肿瘤细胞与通过双 TLR 刺激的树突状细胞融合,增强抗肿瘤免疫力

阅读:6
作者:Shigeo Koido, Sadamu Homma, Masato Okamoto, Yoshihisa Namiki, Kazuki Takakura, Akitaka Takahara, Shunichi Odahara, Shintaro Tsukinaga, Toyokazu Yukawa, Jimi Mitobe, Hiroshi Matsudaira, Keisuke Nagatsuma, Mikio Kajihara, Kan Uchiyama, Seiji Arihiro, Hiroo Imazu, Hiroshi Arakawa, Shin Kan, Kazumi Haya

Abstract

The therapeutic efficacy of fusion cell (FC)-based cancer vaccine generated with whole tumor cells and dendritic cells (DCs) requires the improved immunogenicity of both cells. Treatment of whole tumor cells with ethanol resulted in blockade of immune-suppressive soluble factors such as transforming growth factor (TGF)-β1, vascular endothelial growth factor, and IL-10 without decreased expression of major histocompatibility complex (MHC) class I and the MUC1 tumor-associated antigen. Moreover, the ethanol-treated tumor cells expressed "eat-me" signals such as calreticulin (CRT) on the cell surface and released immunostimulatory factors such as heat shock protein (HSP)90α and high-mobility group box 1 (HMGB1). A dual stimulation of protein-bound polysaccharides isolated from Coriolus versicolor (TLR2 agonist) and penicillin-inactivated Streptococcus pyogenes (TLR4 agonist) led human monocyte-derived DCs to produce HSP90α and multiple cytokines such as IL-12p70 and IL-10. Interestingly, incorporating ethanol-treated tumor cells and TLRs-stimulated DCs during the fusion process promoted fusion efficiency and up-regulated MHC class II molecules on a per fusion basis. Moreover, fusions of ethanol-treated tumor cells and dual TLRs-stimulated DCs (E-tumor/FCs) inhibited the production of multiple immune-suppressive soluble factors including TGF-β1 and up-regulated the production of IL-12p70 and HSP90α. Most importantly, E-tumor/FCs activated T cells capable of producing high levels of IFN-γ, resulting in augmented MUC1-specific CTL induction. Collectively, our results illustrate the synergy between ethanol-treated whole tumor cells and dual TLRs-stimulated DCs in inducing augmented CTL responses in vitro by FC preparations. The alternative system is simple and may provide a platform for adoptive immunotherapy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。