Emerging role of calcium-activated potassium channel in the regulation of cell viability following potassium ions challenge in HEK293 cells and pharmacological modulation

钙激活钾通道在 HEK293 细胞中钾离子刺激后对细胞活力的调节作用及药理调节

阅读:5
作者:Domenico Tricarico, Antonietta Mele, Sara Calzolaro, Gianluigi Cannone, Giulia Maria Camerino, Maria Maddalena Dinardo, Ramon Latorre, Diana Conte Camerino

Abstract

Emerging evidences suggest that Ca(2+)activated-K(+)-(BK) channel is involved in the regulation of cell viability. The changes of the cell viability observed under hyperkalemia (15 mEq/L) or hypokalemia (0.55 mEq/L) conditions were investigated in HEK293 cells expressing the hslo subunit (hslo-HEK293) in the presence or absence of BK channel modulators. The BK channel openers(10(-11)-10(-3)M) were: acetazolamide(ACTZ), Dichlorphenamide(DCP), methazolamide(MTZ), bendroflumethiazide(BFT), ethoxzolamide(ETX), hydrochlorthiazide(HCT), quercetin(QUERC), resveratrol(RESV) and NS1619; and the BK channel blockers(2 x 10(-7)M-5 x 10(-3)M) were: tetraethylammonium(TEA), iberiotoxin(IbTx) and charybdotoxin(ChTX). Experiments on cell viability and channel currents were performed using cell counting kit-8 and patch-clamp techniques, respectively. Hslo whole-cell current was potentiated by BK channel openers with different potency and efficacy in hslo-HEK293. The efficacy ranking of the openers at -60 mV(Vm) was BFT> ACTZ >DCP ≥RESV≥ ETX> NS1619> MTZ≥ QUERC; HCT was not effective. Cell viability after 24 h of incubation under hyperkalemia was enhanced by 82+6% and 33+7% in hslo-HEK293 cells and HEK293 cells, respectively. IbTx, ChTX and TEA enhanced cell viability in hslo-HEK293. BK openers prevented the enhancement of the cell viability induced by hyperkalemia or IbTx in hslo-HEK293 showing an efficacy which was comparable with that observed as BK openers. BK channel modulators failed to affect cell currents and viability under hyperkalemia conditions in the absence of hslo subunit. In contrast, under hypokalemia cell viability was reduced by -22+4% and -23+6% in hslo-HEK293 and HEK293 cells, respectively; the BK channel modulators failed to affect this parameter in these cells. In conclusion, BK channel regulates cell viability under hyperkalemia but not hypokalemia conditions. BFT and ACTZ were the most potent drugs either in activating the BK current and in preventing the cell proliferation induced by hyperkalemia. These findings may have relevance in disorders associated with abnormal K(+) ion homeostasis including periodic paralysis and myotonia.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。