Investigating the Quantification Capabilities of a Nanopore-Based Sequencing Platform for Food Safety Application via External Standards of Lambda DNA and Lambda Spiked Beef

通过 Lambda DNA 和 Lambda 加标牛肉的外部标准研究基于纳米孔的测序平台在食品安全应用方面的定量能力

阅读:5
作者:Sky Harper, Katrina L Counihan, Siddhartha Kanrar, George C Paoli, Shannon Tilman, Andrew G Gehring

Abstract

Six hundred million cases of disease and roughly 420,000 deaths occur globally each year due to foodborne pathogens. Current methods to screen and identify pathogens in swine, poultry, and cattle products include immuno-based techniques (e.g., immunoassay integrated biosensors), molecular methods (e.g., DNA hybridization and PCR assays), and traditional culturing. These methods are often used in tandem to screen, quantify, and characterize samples, prolonging real-time comprehensive analysis. Next-generation sequencing (NGS) is a relatively new technology that combines DNA-sequencing chemistry and bioinformatics to generate and analyze large amounts of short- or long-read DNA sequences and whole genomes. The goal of this project was to evaluate the quantitative capabilities of the real-time NGS Oxford Nanopore Technologies' MinION sequencer through a shotgun-based sequencing approach. This investigation explored the correlation between known amounts of the analyte (lambda DNA as a pathogenic bacterial surrogate) with data output, in both the presence and absence of a background matrix (Bos taurus DNA). A positive linear correlation was observed between the concentration of analyte and the amount of data produced, number of bases sequenced, and number of reads generated in both the presence and absence of a background matrix. In the presence of bovine DNA, the sequenced data were successfully mapped to the NCBI lambda reference genome. Furthermore, the workflow from pre-extracted DNA to target identification took less than 3 h, demonstrating the potential of long-read sequencing in food safety as a rapid method for screening, identification, and quantification.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。