Oestrogen increases nociception through ERK activation in the trigeminal ganglion: evidence for a peripheral mechanism of allodynia

雌激素通过三叉神经节中的 ERK 激活增加痛觉:异常性疼痛的外周机制的证据

阅读:5
作者:C S Liverman, J W Brown, R Sandhir, R M Klein, K McCarson, N E J Berman

Abstract

The mitogen-activated protein kinase, extracellular signal-regulated kinase (ERK), is activated in experimental models of chronic pain, and is also activated by oestrogen. We used an established model of inflammatory trigeminal pain, injection of Complete Freund's Adjuvant (CFA) into the masseter muscle, to determine whether ERK activation may play a role in hormone-related trigeminal pain disorders. We measured withdrawal responses to stimulation of the masseter (V3, primary allodynia) and whisker pad (V2, secondary allodynia) using graded monofilaments. Oestrogen treatment in the presence of inflammation increased withdrawal response to stimulation of both masseter and whisker pad compared with inflammation alone, indicating an additive effect of inflammation and oestrogen on both primary and secondary allodynia. We examined ERK activation in trigeminal ganglia from each treatment group using western blot and immunohistochemistry. Both masseter inflammation and oestrogen treatment increased ERK activation, and combined treatment had an additive effect. Both masseter inflammation and oestrogen increased the percentage of pERK immunoreactive neurons in divisions 1 and 2 (V1/2), and combined treatment increased pERK immunoreactivity in V1/2 compared with inflammation alone. We stereotactically administered ERK antagonist U0126, or inactive control U0124, to the trigeminal ganglion of CFA+E2-treated rats. U0126 decreased withdrawal responses to mechanical stimulation of the whisker pad compared with U0124-treated rats. Because the secondary allodynia in V2 after inflammation in V3 was reduced by antagonizing ERK activation in the periphery, these data suggest a peripheral component to secondary allodynia mediated through ERK activation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。