Reduced body mass, food intake, and testis size in response to short photoperiod in adult F344 rats

成年 F344 大鼠因短光周期而导致体重、食物摄入量和睾丸尺寸减小

阅读:6
作者:M Benjamin Shoemaker, Paul D Heideman

Background

Although laboratory rats are often considered classic nonseasonal breeders, peripubertal rats of two inbred strains, F344 and BN, have both reproductive and nonreproductive responses to short photoperiods. Unmanipulated adult rats have not been reported to have robust responses to short photoperiod alone, although several treatments can induce photoperiodic responses in adults. In this study, we tested the hypotheses that unmanipulated F344 rats retain responses to short photoperiod as adults and that they have the necessary elements for an endogenous circannual rhythm of sensitivity to short photoperiod.

Conclusion

Male F344 rats retain photoresponsiveness as adults, with less reproductive inhibition but equivalent nonreproductive responses. There was only weak evidence for an endogenous timer controlling a circannual cycle of sensitivity to short photoperiod.

Results

Relative to rats kept in long photoperiods (L16:D8), adult F344 rats transferred at 4.5 months of age to short photoperiods (L8:D16) had significantly lower testis size, food intake, and body weight. In a second experiment, newly weaned F344 rats underwent an initial period of inhibition of reproductive maturation, lower food intake, and lower body weight in short photoperiod or intermediate photoperiod (L12:D12) relative to rats in long photoperiod. By 18 weeks of treatment, rats in the two inhibitory photoperiods no longer differed from long photoperiod controls. In short photoperiod, rats underwent a second period of slight reproductive inhibition between weeks 35 and 48, but there was an effect on body weight and slight inhibition of food intake only in an intermediate photoperiod.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。