The eukaryotic replisome tolerates leading-strand base damage by replicase switching

真核复制体通过复制酶转换来耐受前导链碱基损伤

阅读:6
作者:Thomas A Guilliam, Joseph Tp Yeeles

Abstract

The high-fidelity replicative DNA polymerases, Pol ε and Pol δ, are generally thought to be poorly equipped to replicate damaged DNA. Direct and complete replication of a damaged template therefore typically requires the activity of low-fidelity translesion synthesis (TLS) polymerases. Here we show that a yeast replisome, reconstituted with purified proteins, is inherently tolerant of the common oxidative lesion thymine glycol (Tg). Surprisingly, leading-strand Tg was bypassed efficiently in the presence and absence of the TLS machinery. Our data reveal that following helicase-polymerase uncoupling a switch from Pol ε, the canonical leading-strand replicase, to the lagging-strand replicase Pol δ, facilitates rapid, efficient and error-free lesion bypass at physiological nucleotide levels. This replicase switch mechanism also promotes bypass of the unrelated oxidative lesion, 8-oxoguanine. We propose that replicase switching may promote continued leading-strand synthesis whenever the replisome encounters leading-strand damage that is bypassed more efficiently by Pol δ than by Pol ε.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。