Methoxyacetic acid inhibits histone deacetylase and impairs axial elongation morphogenesis of mouse gastruloids in a retinoic acid signaling-dependent manner

甲氧基乙酸以视黄酸信号依赖的方式抑制组蛋白去乙酰化酶并损害小鼠原肠胚的轴向伸长形态发生

阅读:7
作者:Aileen S W Li, Yusuke Marikawa

Background

Teratogenic potential has been linked to various industrial compounds. Methoxyacetic acid (MAA) is a primary metabolite of the widely used organic solvent and plasticizer, methoxyethanol and dimethoxyethyl phthalate, respectively. Studies using model animals have shown that MAA acts as the proximate teratogen that causes various malformations in developing embryos. Nonetheless, the molecular mechanisms by which MAA exerts its teratogenic effects are not fully understood.

Conclusions

MAA impaired axial elongation morphogenesis in a RA signaling-dependent manner in mouse gastruloids, possibly through the inhibition of histone deacetylase.

Methods

Gastruloids of mouse P19C5 pluripotent stem cells, which recapitulate axial elongation morphogenesis of gastrulation-stage embryos, were explored as an in vitro model to investigate the teratogenic action of MAA. Morphometric parameters of gastruloids were measured to evaluate the morphogenetic effect, and transcript levels of various developmental regulator genes were examined to assess the impact on gene expression patterns. The effects of MAA on the level of retinoic acid (RA) signaling and histone deacetylase activity were also measured.

Results

MAA reduced axial elongation of gastruloids at concentrations comparable to the teratogenic plasma level (5 mM) in vivo. MAA at 4 mM significantly altered the expression profiles of developmental regulator genes. In particular, it upregulated the RA signaling target genes. The concomitant suppression of RA signaling using a pharmacological agent alleviated the morphogenetic effect of MAA. MAA at 4 mM also significantly reduced the activity of purified histone deacetylase protein. Conclusions: MAA impaired axial elongation morphogenesis in a RA signaling-dependent manner in mouse gastruloids, possibly through the inhibition of histone deacetylase.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。