Effect of pH on temperature controlled degradation of reactive oxygen species, heat shock protein expression, and mucosal immunity in the sea cucumber Isostichopus badionotus

pH对海参活性氧温度控制降解、热休克蛋白表达及黏膜免疫的影响

阅读:7
作者:Mariel Gullian Klanian, Montserrat Terrats Preciat

Abstract

This study evaluated the effect of pH on the activity of antioxidant and immune enzymes in the sea cucumber Isostichopus badionotus exposed to different temperatures. The organisms (530 ±110 g) were exposed to 16, 20, 24, 28, 30, 34 and 36°C for 6 h to evaluate thermal limits at two water pH values (treatment = 7.70; control = 8.17). For the thermal tolerance experiment, the organisms were exposed to sublethal temperature of 34°C for 3, 6, 12, 24, and 48 h. I. badionotus showed signs of thermal stress by synthesizing heat shock protein 70 (hsp70) at the cold (16°C) and warm thermal limits (34°C). The glutathione peroxidase (GPx) showed a negative correlation with superoxide dismutase (SOD) activity in modulating the effect of oxidative stress at different temperature levels. Specifically, GPx activity was maximal at the extremes of the cold and warm temperatures (16, 20, and 36°C) tested, while contrarily, the SOD activity increased significantly in the narrow range of temperature between 28 and 30°C, as a part of a reaction to offset oxidative damage. The effect of pH on the expression of hsp70 was not significant, whereas the antioxidant enzymes activity was stimulated at pH 7.70. Mucosal immunity, evidenced by the activation of the phenoloxidase (PO) system, increased above the basal level at pH 7.70 and at 28, 30, and 34°C. Independent of pH, the temperature of 34°C was identified as the 12 h-sublethal upper limit for I. badionotus.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。