From Foxtail Millet Husk (Waste) to Bioactive Phenolic Extracts Using Deep Eutectic Solvent Extraction and Evaluation of Antioxidant, Acetylcholinesterase, and α-Glucosidase Inhibitory Activities

利用深共熔溶剂萃取法从谷子壳(废料)中提取生物活性酚类提取物,并评估其抗氧化、乙酰胆碱酯酶和 α-葡萄糖苷酶抑制活性

阅读:24
作者:Chunqing Wang, Zhenzhen Li, Jinle Xiang, Joel B Johnson, Bailiang Zheng, Lei Luo, Trust Beta

Abstract

Foxtail millet husk (FMH) is generally removed and discarded during the first step of millet processing. This study aimed to optimize a method using deep eutectic solvents (DESs) combined with ultrasonic-assisted extraction (UAE) to extract phenols from FMH and to identify the phenolic compositions and evaluate the biological activities. The optimized DES comprised L-lactic acid and glycol with a 1:2 molar ratio by taking the total flavonoid content (TFC) and total phenolic content (TPC) as targets. The extraction parameters were optimized to maximize TFC and TPC, using the following settings: liquid-to-solid ratio of 25 mL/g, DES with water content of 15%, extraction time of 41 min and temperature of 51 °C, and ultrasonic power at 304 W. The optimized UAE-DES, which produced significantly higher TPC, TFC, antioxidant activity, α-glucosidase, and acetylcholinesterase inhibitory activities compared to conventional solvent extraction. Through UPLC-MS, 12 phenolic compounds were identified, with 1-O-p-coumaroylglycerol, apigenin-C-pentosyl-C-hexoside, and 1-O-feruloyl-3-O-p-coumaroylglycerol being the main phenolic components. 1-O-feruloyl-3-O-p-coumaroylglycerol and 3,7-dimethylquercetin were identified first in foxtail millet. Our results indicated that FMH could be exploited by UAE-DES extraction as a useful source of naturally derived antioxidants, along with acetylcholinesterase and α-glucosidase inhibitory activities.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。