Application for Identifying the Origin and Predicting the Physiologically Active Ingredient Contents of Gastrodia elata Blume Using Visible-Near-Infrared Spectroscopy Combined with Machine Learning

可见-近红外光谱结合机器学习在天麻产地识别及生理活性成分预测中的应用

阅读:8
作者:Jinfang Ma, Xue Zhou, Baiheng Xie, Caiyun Wang, Jiaze Chen, Yanliu Zhu, Hui Wang, Fahuan Ge, Furong Huang

Abstract

Gastrodia elata (G. elata) Blume is widely used as a health product with significant economic, medicinal, and ecological values. Due to variations in the geographical origin, soil pH, and content of organic matter, the levels of physiologically active ingredient contents in G. elata from different origins may vary. Therefore, rapid methods for predicting the geographical origin and the contents of these ingredients are important for the market. This paper proposes a visible-near-infrared (Vis-NIR) spectroscopy technology combined with machine learning. A variety of machine learning models were benchmarked against a one-dimensional convolutional neural network (1D-CNN) in terms of accuracy. In the origin identification models, the 1D-CNN demonstrated excellent performance, with the F1 score being 1.0000, correctly identifying the 11 origins. In the quantitative models, the 1D-CNN outperformed the other three algorithms. For the prediction set of eight physiologically active ingredients, namely, GA, HA, PE, PB, PC, PA, GA + HA, and total, the RMSEP values were 0.2881, 0.0871, 0.3387, 0.2485, 0.0761, 0.7027, 0.3664, and 1.2965, respectively. The Rp2 values were 0.9278, 0.9321, 0.9433, 0.9094, 0.9454, 0.9282, 0.9173, and 0.9323, respectively. This study demonstrated that the 1D-CNN showed highly accurate non-linear descriptive capability. The proposed combinations of Vis-NIR spectroscopy with 1D-CNN models have significant potential in the quality evaluation of G. elata.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。