Fabrication of a Fully Printed Ammonia Gas Sensor Based on ZnO/rGO Using Ultraviolet-Ozone Treatment

利用紫外臭氧处理技术制造基于 ZnO/rGO 的全印刷氨气传感器

阅读:6
作者:Mijin Won, Jaeho Sim, Gyeongseok Oh, Minhun Jung, Snigdha Paramita Mantry, Dong-Soo Kim

Abstract

In this study, a room-temperature ammonia gas sensor using a ZnO and reduced graphene oxide (rGO) composite is developed. The sensor fabrication involved the innovative application of reverse offset and electrostatic spray deposition (ESD) techniques to create a ZnO/rGO sensing platform. The structural and chemical characteristics of the resulting material were comprehensively analyzed using XRD, FT-IR, FESEM, EDS, and XPS, and rGO reduction was achieved via UV-ozone treatment. Electrical properties were assessed through I-V curves, demonstrating enhanced conductivity due to UV-ozone treatment and improved charge mobility from the formation of a ZnO-rGO heterojunction. Exposure to ammonia gas resulted in increased sensor responsiveness, with longer UV-ozone treatment durations yielding superior sensitivity. Furthermore, response and recovery times were measured, with the 10 min UV-ozone-treated sensor displaying optimal responsiveness. Performance evaluation revealed linear responsiveness to ammonia concentration with a high R2 value. The sensor also exhibited exceptional selectivity for ammonia compared to acetone and CO gases, making it a promising candidate for ammonia gas detection. This study shows the outstanding performance and potential applications of the ZnO/rGO-based ammonia gas sensor, promising significant contributions to the field of gas detection.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。