Response Surface Optimization of Extraction Conditions for the Active Components with High Acetylcholinesterase Inhibitory Activity and Identification of Key Metabolites from Acer truncatum Seed Oil Residue

响应面优化元宝枫籽油渣中高乙酰胆碱酯酶抑制活性成分提取条件及关键代谢产物的鉴定

阅读:8
作者:Ruonan Meng, Kaixiang Ou, Ling Chen, Yu Jiao, Fangjie Jiang, Ronghui Gu

Abstract

The State Council of China has called for the comprehensive development and utilization of Acer truncatum resources. However, research on one of its by-products, namely seed oil residue (ASR), from seed oil extraction is seriously insufficient, resulting in a waste of these precious resources. We aimed to optimize the conditions of ultrasound-assisted extraction (UAE) using a response surface methodology to obtain high acetylcholinesterase (AChE) inhibitory components from ASR and to tentatively identify the active metabolites in ASR using non-targeted metabolomics. Based on the results of the independent variables test, the interaction effects of three key extracting variables, including methanol concentration, ultrasonic time, and material-to-liquid ratio, were further investigated using the Box-Behnken design (BBD) to obtain prior active components with high AChE inhibitory activity. UPLC-QTOF-MS combined with a multivariate method was used to analyze the metabolites in ASR and investigate the causes of activity differences. Based on the current study, the optimal conditions for UAE were as follows: methanol concentration of 85.06%, ultrasonic time of 39.1 min, and material-to-liquid ratio of 1.06:10 (g/mL). Under these optimal conditions, the obtained extracts show strong inhibitions against AChE with half maximal inhibitory concentration (IC50) values ranging from 0.375 to 0.459 µg/mL according to an Ellman's method evaluation. Furthermore, 55 metabolites were identified from the ASR extracted using methanol in different concentrations, and 9 biomarkers were subsequently identified as potential compounds responsible for the observed AChE inhibition. The active extracts have potential to be used for the development of functional foods with positive effects on Alzheimer's disease owing to their high AChE inhibition activity. Altogether, this study provides insights into promoting the comprehensive utilization of A. truncatum resources.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。