Oxidative stress induced age dependent meibomian gland dysfunction in Cu, Zn-superoxide dismutase-1 (Sod1) knockout mice

氧化应激导致 Cu、Zn-超氧化物歧化酶-1 (Sod1) 基因敲除小鼠出现年龄依赖性的睑板腺功能障碍

阅读:5
作者:Osama M A Ibrahim, Murat Dogru, Yukihiro Matsumoto, Ayako Igarashi, Takashi Kojima, Tais Hitomi Wakamatsu, Takaaki Inaba, Takahiko Shimizu, Jun Shimazaki, Kazuo Tsubota

Conclusions

Our results suggest that reactive oxygen species might play a vital role in the pathogensis of meibomian gland dysfunction. The Sod1-/- mouse appears to be a promising model for the study of reactive oxygen species associated MG alterations.

Methods

Tear function tests [Break up time (BUT) and cotton thread] and ocular vital staining test were performed on Sod1-/- male mice (n = 24) aged 10 and 50 weeks, and age and sex matched wild-type (+/+) mice (n = 25). Tear and serum samples were collected at sacrifice for inflammatory cytokine assays. MG specimens underwent Hematoxylin and Eosin staining, Mallory staining for fibrosis, Oil Red O lipid staining, TUNEL staining, immunohistochemistry stainings for 4HNE, 8-OHdG and CD45. Transmission electron microscopic examination (TEM) was also performed.

Purpose

The purpose of our study was to investigate alterations in the meibomian gland (MG) in Cu, Zn-Superoxide Dismutase-1 knockout (Sod1-/-) mouse.

Results

Corneal vital staining scores in the Sod1-/- mice were significantly higher compared with the wild type mice throughout the follow-up. Tear and serum IL-6 and TNF-α levels also showed significant elevations in the 10 to 50 week Sod1-/- mice. Oil Red O staining showed an accumulation of large lipid droplets in the Sod1-/- mice at 50 weeks. Immunohistochemistry revealed both increased TUNEL and oxidative stress marker stainings of the MG acinar epithelium in the Sod1-/- mice compared to the wild type mice. Immunohistochemistry staining for CD45 showed increasing inflammatory cell infiltrates from 10 to 50 weeks in the Sod1-/- mice compared to the wild type mice. TEM revealed prominent mitochondrial changes in 50 week Sod1-/- mice. Conclusions: Our results suggest that reactive oxygen species might play a vital role in the pathogensis of meibomian gland dysfunction. The Sod1-/- mouse appears to be a promising model for the study of reactive oxygen species associated MG alterations.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。