Lysine demethylase KDM1A promotes cell growth via FKBP8-BCL2 axis in hepatocellular carcinoma

赖氨酸脱甲基酶 KDM1A 通过 FKBP8-BCL2 轴促进肝细胞癌细胞生长

阅读:5
作者:Suli Lv, Xuefeng Zhao, Erlei Zhang, Yingying Yan, Xianyun Ma, Neng Li, Qingli Zou, Lidong Sun, Tanjing Song

Abstract

Advanced hepatocellular carcinoma (HCC) has a dismal prognosis. KDM1A (lysine demethylase 1A), overexpressed in multiple cancer types, is a lysine demethylase that targets both histone and nonhistone proteins. However, it is unclear how KDM1A expression affects HCC etiology. Here, we show that KDM1A can interact with and demethylate FKBP8 (FKBP prolyl isomerase 8), a cytoplasmic protein that regulates cell survival through the antiapoptotic protein BCL2 (B-cell lymphoma-2). We show that demethylation of FKBP8 enhances its ability to stabilize BCL2. Consistently, we observed positive correlation between KDM1A and BCL2 protein levels in liver cancer patients. Functionally, we reveal that FKBP8 demethylation by KDM1A is critical for liver cancer cell growth in vitro and in vivo. We went on to explore the mechanisms that might regulate KDM1A cytoplasmic localization. We found that the cytoplasmic localization and protein stability of KDM1A were promoted by acetylation at lysine-117 by the acetyl transferase KAT8 (lysine acetyltransferase 8). In agreement with this, we show that KDM1A-K117 (lysine 117) acetylation promotes demethylation of FKBP8 and level of BCL2. Finally, it has been shown that the efficacy of sorafenib, a first-line treatment for advanced HCC, is limited by clinical resistance. We show that KDM1A and BCL2 protein levels are increased during acquired sorafenib resistance, whereas inhibiting KDM1A can antagonize sorafenib resistance. Collectively, these results define a functional KDM1A-FKBP8-BCL2 axis in HCC.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。