Repeated cocaine administration decreases 5-HT(2A) receptor-mediated serotonergic enhancement of synaptic activity in rat medial prefrontal cortex

重复服用可卡因可降低大鼠内侧前额叶皮质5-HT(2A)受体介导的5-羟色胺能突触活动增强

阅读:5
作者:Chiung-Chun Huang, Ying-Ching Liang, Cheng-Che Lee, Mei-Ying Wu, Kuei-Sen Hsu

Abstract

Neural adaptations in the medial prefrontal cortex (mPFC) are thought to be crucial in the development and maintenance of addictive behaviors. The mPFC receives a dense serotonergic (5-hydroxytryptamine, 5-HT) innervation from raphe nuclei and 5-HT exerts complex actions on mPFC pyramidal neurons. The present study, using a rat model of behavioral sensitization to cocaine, was designed to determine whether repeated cocaine exposure in vivo is capable of altering 5-HT-induced regulation of glutamatergic transmission in the mPFC. In layer V pyramidal neurons of the mPFC, application of 5-HT, through activation of 5-HT(2A) receptors, induced a massive enhancement of spontaneous excitatory postsynaptic currents (sEPSCs). Repeated cocaine administration for 5 days resulted in an attenuation in the ability of 5-HT to enhance sEPSCs. This effect was prevented when cocaine was co-administered with the selective 5-HT(2A) receptor antagonist ketanserin and was mimicked by repeated 5-HT(2A) receptor agonist (-)4-iodo-2,5-dimethoxyphenylisopropylamine administration. Repeated cocaine administration is not associated with any changes in the levels of 5-HT(2A) receptors or regulator of GTP-binding protein signaling 4. These results suggest that cocaine-induced inhibition of 5-HT(2A) receptor-mediated enhancement of glutamatergic transmission in the mPFC may be caused, at least in part, by the impairment of coupling of 5-HT(2A) receptors with GTP-binding proteins during cocaine withdrawal. These alterations in 5-HT(2A) receptor responsiveness in the mPFC may be relevant to the development of behavioral sensitization and withdrawal effects following repeated cocaine administration.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。