Identification of target genes of the bZIP transcription factor OsTGAP1, whose overexpression causes elicitor-induced hyperaccumulation of diterpenoid phytoalexins in rice cells

鉴定 bZIP 转录因子 OsTGAP1 的靶基因,其过表达导致水稻细胞中诱导物诱导的二萜类植物抗毒素过度积累

阅读:5
作者:Koji Miyamoto, Takashi Matsumoto, Atsushi Okada, Kohei Komiyama, Tetsuya Chujo, Hirofumi Yoshikawa, Hideaki Nojiri, Hisakazu Yamane, Kazunori Okada

Abstract

Phytoalexins are specialised antimicrobial metabolites that are produced by plants in response to pathogen attack. Momilactones and phytocassanes are the major diterpenoid phytoalexins in rice and are synthesised from geranylgeranyl diphosphate, which is derived from the methylerythritol phosphate (MEP) pathway. The hyperaccumulation of momilactones and phytocassanes due to the hyperinductive expression of the relevant biosynthetic genes and the MEP pathway gene OsDXS3 in OsTGAP1-overexpressing (OsTGAP1ox) rice cells has previously been shown to be stimulated by the chitin oligosaccharide elicitor. In this study, to clarify the mechanisms of the elicitor-stimulated coordinated hyperinduction of these phytoalexin biosynthetic genes in OsTGAP1ox cells, transcriptome analysis and chromatin immunoprecipitation with next-generation sequencing were performed, resulting in the identification of 122 OsTGAP1 target genes. Transcriptome analysis revealed that nearly all of the momilactone and phytocassane biosynthetic genes, which are clustered on chromosomes 4 and 2, respectively, and the MEP pathway genes were hyperinductively expressed in the elicitor-stimulated OsTGAP1ox cells. Unexpectedly, none of the clustered genes was included among the OsTGAP1 target genes, suggesting that OsTGAP1 did not directly regulate the expression of these biosynthetic genes through binding to each promoter region. Interestingly, however, several OsTGAP1-binding regions were found in the intergenic regions among and near the cluster regions. Concerning the MEP pathway genes, only OsDXS3, which encodes a key enzyme of the MEP pathway, possessed an OsTGAP1-binding region in its upstream region. A subsequent transactivation assay further confirmed the direct regulation of OsDXS3 expression by OsTGAP1, but other MEP pathway genes were not included among the OsTGAP1 target genes. Collectively, these results suggest that OsTGAP1 participates in the enhanced accumulation of diterpenoid phytoalexins, primarily through mechanisms other than the direct transcriptional regulation of the genes involved in the biosynthetic pathway of these phytoalexins.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。