GPR83 engages endogenous peptides from two distinct precursors to elicit differential signaling

GPR83 与两种不同前体的内源性肽结合,引发差异信号

阅读:8
作者:Seshat M Mack, Ivone Gomes, Amanda K Fakira, Mariana L Duarte, Achla Gupta, Lloyd Fricker, Lakshmi A Devi

Abstract

PEN is an abundant neuropeptide that activates GPR83, a G protein-coupled receptor that is considered a novel therapeutic target due to its roles in regulation of feeding, reward, and anxiety-related behaviors. The major form of PEN in the brain is 22 residues in length. Previous studies have identified shorter forms of PEN in mouse brain and neuroendocrine cells; these shorter forms were named PEN18, PEN19 and PEN20, with the number reflecting the length of the peptide. The C-terminal five residues of PEN20 are identical to the C-terminus of a procholecystokinin (proCCK)-derived peptide, named proCCK56-62, that is present in mouse brain. ProCCK56-62 is highly conserved across species although it has no homology to the bioactive cholecystokinin domain. ProCCK56-62 and a longer form, proCCK56-63 were tested for their ability to engage GPR83. Both peptides bind GPR83 with high affinity, activate second messenger pathways, and induce ligand-mediated receptor endocytosis. Interestingly, the shorter PEN peptides, ProCC56-62, and ProCCK56-63 differentially activate signal transduction pathways. Whereas PEN22 and PEN20 facilitate receptor coupling to Gai, PEN18, PEN19 and ProCCK peptides facilitate coupling to Gas. Furthermore, the ProCCK peptides exhibit dose dependent Ga subtype selectivity in that they faciliate coupling to Gas at low concentrations and Gai at high concentrations. These data demonstrate that peptides derived from two distinct peptide precursors can differentially activate GPR83, and that GPR83 exhibits Ga subtype preference depending on the nature and concentration of the peptide. These results are consistent with the emerging idea that endogenous neuropeptides function as biased ligands. Significance Statement We found that peptides derived from proCCK bind and activate GPR83, a G protein-coupled receptor that is known to bind peptides derived from proSAAS. Different forms of the proCCK- and proSAAS-derived peptides show biased agonism, activating Gas or Gai depending on the length of the peptide and/or its concentration.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。