RNA G-quadruplexes and calcium ions synergistically induce Tau phase transition in vitro

RNA G-四链体和钙离子在体外协同诱导 Tau 相变

阅读:5
作者:Yasushi Yabuki, Kazuya Matsuo, Ginji Komiya, Kenta Kudo, Karin Hori, Susumu Ikenoshita, Yasushi Kawata, Tomohiro Mizobata, Norifumi Shioda

Abstract

Tau aggregation is a defining feature of neurodegenerative tauopathies, including Alzheimer's disease, corticobasal degeneration, and frontotemporal dementia. This aggregation involves the liquid-liquid phase separation (LLPS) of Tau, followed by its sol-gel phase transition, representing a crucial step in aggregate formation both in vitro and in vivo. However, the precise cofactors influencing Tau phase transition and aggregation under physiological conditions (e.g., ion concentration and temperature) remain unclear. In this study, we unveil that nucleic acid secondary structures, specifically RNA G-quadruplexes (rG4s), and calcium ions (Ca2+) synergistically facilitated the sol-gel phase transition of human Tau under mimic intracellular ion conditions (140 mM KCl, 15 mM NaCl, and 10 mM MgCl2) at 37 °C in vitro. In the presence of molecular crowding reagents, Tau formed stable liquid droplets through LLPS, maintaining fluidity for 24 h under physiological conditions. Notably, cell-derived RNA promoted Tau sol-gel phase transition, with rG4s emerging as a crucial factor. Surprisingly, polyanion heparin did not elicit a similar response, indicating a distinct mechanism not rooted in electrostatic interactions. Further exploration underscored the significance of Ca2+, which accumulate intracellularly during neurodegeneration, as additional cofactors in promoting Tau phase transition after 24 h. Importantly, our findings demonstrate that rG4s and Ca2+ synergistically enhance Tau phase transition within 1 h when introduced to Tau droplets. Moreover, rG4-Tau aggregates showed seeding ability in cells. In conclusion, our study illuminates the pivotal roles of rG4s and Ca2+ in promoting Tau aggregation under physiological conditions in vitro, offering insights into potential triggers for tauopathy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。