Digoxin Induces Human Astrocyte Reaction In Vitro

地高辛体外诱导人类星形胶质细胞反应

阅读:6
作者:David Pamies, Tatjana Vujić, Domitille Schvartz, Julien Boccard, Cendrine Repond, Carolina Nunes, Serge Rudaz, Jean-Charles Sanchez, Víctor González-Ruiz, Marie-Gabrielle Zurich

Abstract

Astrocyte reaction is a complex cellular process involving astrocytes in response to various types of CNS injury and a marker of neurotoxicity. It has been abundantly studied in rodents but relatively poorly in human cells due to limited access to the brain. Astrocytes play important roles in cerebral energy metabolism and are also key players in neuroinflammation. Astroglial metabolic and inflammatory changes have been reported with age, leading to the hypothesis that mitochondrial metabolism and inflammatory responses are interconnected. However, the relationship between energy metabolism and astrocyte reactivity in the context of neurotoxicity is not known. We hypothesized that changes in energy metabolism of astrocytes will be coupled to their activation by xenobiotics. Astrocyte reaction and associated energy metabolic changes were assessed by immunostaining, gene expression, proteomics, metabolomics, and extracellular flux analyses after 24 h of exposure of human ReN-derived astrocytes to digoxin (1-10 µM) or TNFα (30 ng/ml) used as a positive control. Strong astrocytic reaction was observed, accompanied by increased glycolysis at low concentrations of digoxin (0.1 and 0.5 µM) and after TNFα exposure, suggesting that increased glycolysis may be a common feature of reactive astrocytes, independent of the triggering molecule. In conclusion, whether astrocyte activation is triggered by cytokines or a xenobiotic, it is strongly tied to energy metabolism in human ReN-derived astrocytes. Increased glycolysis might be considered as an endpoint to detect astrocyte activation by potentially neurotoxic compounds in vitro. Finally, ReN-derived astrocytes may help to decipher mechanisms of neurotoxicity in ascertaining the ability of chemicals to directly target astrocytes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。